
i- / - 17 ,._/

N95- 32429

VALIDATION OF SPACE/GROUND ANTENNA CONTROL ALGORITHMS
USING A COMPUTER-AIDED DESIGN TOOL

Final Report

NASA/ASEE Summer Faculty Fellowship Program -- 1994

Johnson Space Center

Prepared by:

Academic rank:

College and department:

Dr. Rex E. Gantenbein

Associate Professor

University of Wyoming

Dept. of Computer Science

Laramie WY 82071-3682

NASA/JSC

Directorate:

Division:

Branch:

JSC colleague:

Date submitted:

Contract number:

Engineering

Tracking and Communications

Electromagnetic Systems

Andrew Benjamin

5 August 1994

NGT-44-005-803

12-1

ABSTRACT

The validation of the algorithms for controlling the

space-to-ground antenna subsystem for Space Station Alpha is

an important step in assuring reliable communications. These

algorithms have been developed and tested using a simulation

environment based on a computer-aided design tool that can

provide a time-based execution framework with variable

environmental parameters.

Our work this summer has involved the exploration of this

environment and the documentation of the procedures used to

validate these algorithms. We have installed a variety of

tools in a laboratory of the Tracking and Communications

Division for reproducing the simulation experiments carried

out on these algorithms to verify that they do meet their

requirements for controlling the antenna systems. In this

report, we describe the processes used in these simulations

and our work in validating the tests used.

12-2

INTRODUCTION

Designing algorithms for real-time control of communica-

tions devices is difficult, but even more so is validating the

correctness of that design. The consequences of design errors

are high in many applications of this type, especially where

manned missions are dependent on the system. The users of

such systems are often justifiably concerned about the

possibility of design errors being propagated through the

development process into the completed and deployed system.

Design errors can be a significant problem in making computer-

driven control systems dependable. In many cases, the

manifestations of design faults become noticeable only after

implementation, at which point correction can be expensive due

to the amount of rework that may be required to eliminate the

problem.

One approach proposed to combat this problem is valida-

tion of a computer system design prior to implementation.

Design validation can improve the quality and reduce the cost

of a computer system by eliminating design faults before

implementation begins. Since a design cannot be "tested" in

the usual manner, other techniques based on formal logic or

simulation must be employed to assure both the developers and

the users that the system, as designed, will behave according

to their expectations and needs.

In this summer's project, the author has explored ways to

validate the algorithms developed for controlling the Space-

to-GroundAntenna (SGANT) subsystem to be used on board Space

Station Alpha for communicating with the Tracking and Data

Relay Satellite (TDRS) system. These designs are very complex

and thus prone to design faults that might be overlooked using

traditional testing methods. The goal of this work is to

determine effective ways of validating these designs prior to

their implementation to assure the highest quality systems at

all stages of the development process.

PROJECT OVERVIEW

The SGANT system is being designed by the Satellite and

Communications Systems Division of SPAR Aerospace Ltd. of

Quebec, Canada. Dynacon Enterprises Ltd., in Ontario, Canada,

is designing three control algorithms for this system under

contract to SPAR. The three algorithms control slew, search,

and pull-in/tracking for the SGANT system.

To verify the performance of these algorithms and

demonstrate their conformance to the requirements specified by

12-3

SPAR, Dynacon developed two simulation facilities. These are

the Final Verification Simulator (FVS) and the Probability of

Successful Search Simulator (PSS) [Dynacon92]. The FVS is a

collection of simulations based on a set of common subsystem
models and represents a comprehensive model of the SGANT

system. The PSS simulator addresses the statistical perfor-

mance of the TDRS search and acquisition functions in SGANT.

The FVS simulator includes a discrete-time simulation of

the control algorithms and body dynamics of the system as

deployed both in micro-gravity and in full gravity (for
evaluation in a ground-based lab). This simulator produces a

time-based history of the algorithm behavior under various
parameters. This history is used as input to the PSS simula-

tor, which executes a series of searches over this history to

determine the likelihood of successful acquisition of the TDRS
signal. Together, the two simulators provide a means of

verifying that the control algorithms, as designed, are

capable of meeting the required 90% or more probability of a
successful search. I

VALIDATION ENVIROm_ENT

The goal of the summer project was to recreate the
environment used by Dynacon to validate the SGANT control

algorithms. This required the use of a variety of different

tools, which were installed on the SUN Sparcstation (commlab)
housed in the Communications Laboratoryin Building 14 at JSC.

In this section we describe briefly the tools used.

MATRIX x

The FVS was implemented using the SystemBuild software of

MATRIXx, an automated design tool that provides graphic repre-
sentation of a variety of system building blocks as well as
simulation by discrete or continuous time execution is

[ISI92]. This engineering system design tool supports the
development of graphics-based designs that can be executed on

data tables that represent sensor inputs, as well as a
hierarchy of components that can be packaged into "super-

IAs pointed out in [Dynacon92], the probability of

successful search is an estimate of the probability of
acquisition, which is based on the ability of the system both

to locate the TDRS target and to pull it in and track it. The

computation required to simulate the second probability is,
according to the documentation, "too prohibitive at this time

to allow a statistically significant estimate" of acquisition.

12 -4

blocks" in the design to provide composability and incremental

development. It also allows user code blocks in programming

languages (such as FORTRAN) to be incorporated into a simula-

tion. This feature was used to insert the control algorithms,

as implemented, into the simulation for validation.

GNU C compiler

The PSS simulator was written in the C programming

language, in conformance with the ANSI C standard. The C

compiler provided with the SUN operating system on commlab was

not an ANSI compiler, however, but conformed to the older

standard of C. Normally, there are some syntactic differences

between ANSI and non-ANSI C that can be easily resolved, but

in this particular instance, conversion of the PSS programs to

non-ANSI (SUN-compatible) C code resulted in the program

producing incompatible output.

In an attempt to quickly resolve this conflict, we

installed version 2.6.0 of the GNU C compiler, which we

retrieved by anonymous FTP from Massachusetts Institute of

Technology. This compiler conforms to the ANSI standard

syntax and, after installation, was used to compile the PSS

programs on commlab. The procedures for retrieving and

installing GNU C are included as Appendix A.

As documented later in the report, this compiler was

still not able to reproduce the PSS behavior exactly. For

this reason, a full, commercial ANSI C compiler was purchased

and installed in August 1994. Testing of this compiler's

results against those from Dynacon is still being completed.

GNUPLOT

Since the data sets produced by the FVS and PSS simula-

tors are so large (depending on the duration of the simulated

run and the size of the time frame, as will be described), it

is necessary to have some plotting tools available to look at

and summarize the data. The MATRIX x simulations provide plots

of selected output data, but it was inconvenient to invoke

this package for a simple plot of data. For this reason, we

installed another package available by anonymous FTP from

M.I.T., GNUPLOT. This package is not part of the GNU project

as is GNU C, but provides a simple environment for producing

two- and three-dimensional plots. We found this facility easy

to use and very handy for quick analysis of data during this

project. The procedures for retrieving, installing, and

running GNUPLOT are included as Appendix B.

12-5

VALIDATION PROCEDURES

What we attempted to do in this project was to validate

the results reported in [Dynacon92] by recreating the simula-

tions in the Communications Laboratory. This involved the
following steps:

running the FVS simulations under MATRIX_ to produce the

time history for the tracking and crosstracklng error;

extracting the tracking and crosstracking data into a

file that can be used by the PSS simulator;

• running the PSS simulator on the tracking/crosstracking
data file; and

• analyzing the results.

In this section, we describe the procedures needed to recreate

the simulations. A script for performing simulations is

included as Appendix C.

Running the FVS simulation in MATRIX x

The FVS simulator is driven by batch runscripts executed

from a custom MATRIX x executable file. This executable is

currently installed as "fvsim course3.1" in the directory
/usr2/home/designlab/ben/course- on commlab. 2 When new

versions of MATRIX_ are installed, or if this file becomes

corrupted, it will_e necessary to install it. The instruc-

tions for making a new custom executable are included as

Appendix D.

The "fvsim course3.1" file is executed to invoke the

MATRIXv core. A[the "<>" prompt, the batch runscript for the

simulation desired can be started with the MATRIX_ core exec
command. The runscrlpts used in the Dynaccn simulations are

documented in Section 4 ("Algorithm Verification") of the

final design report [Dynacon92]. There are several parameters

in the runscripts that can change the FVS simulation and

affect the results. The most important of these are listed in
Table I below.

The runscripts add these parameters and other data values

2This directory is the "home" directory for the simula-

tion process. Throughout this document, we will use a "." to

refer to this directory when discussing file structures.

12-6

Table I. MATRIX x runscript parameters.

VARIABLE VALUE DES CRI PT I ON

choice 1,2,3,4,5

serial string

totaltime integer

DToutput decimal

autotrack 0, 1

slew 0, 1

search 0, 1

track 0, 1

TDRS 0, 1

Sr 3.5, 26.5

CMSON 0, 1

x/y/zrot

x/y/ztran

seedl/2/3/4

do sim<x>

decimal

decimal

integer

select algorithms to run

(typically I)

used to name output files

simulation time (seconds)

time frame (seconds)

autotracking simulation:

off (0) / on (i)

slew simulation: off (0)

/ on (I)

TDRS search simulation:

off (0) / on (i)

antenna track simulation:

off (0) / on (i)

custom (0) TDRS motion or

start at zenith (I)

TDRS mean signal level

(should match the level

used in PSS simulation)

CMS Estimate noise: off

(0) / on (i)

rotation disturbances

translation disturbances

set CMS position and ve-

locity noise

_big, --medium, select runscript to execute

_slew, _slew2, ("define" at start of the

2, <blank> batch file must provide

pathname for the run-

script)

12 -7

for the FVS simulation to the MATRIX x data stack, then invoke
another runscript to actually perform the simulation. These

runscripts are stored in the directory ./udc files with the

".udc" extension. Some additional files are _iso included in

this directory that are invoked from the udc runscripts.

Depending on the runscript invoked (and the size of the

ensuing simulation), the time required for the simulation can

run from just under two hours to approximately 48 hours (for

a full simulation). It is advisable to consider specifically

what parameters are needed prior to execution. (In Appendix

C, we describe the runscripts and parameters needed to prepare

data for the PSS simulator.)

Extracting the data for the PSS simulator

Once the FVS simulation has completed (messages describ-

ing the percentage of completion will appear; when the

simulation has reached 100%, the "<>" prompt will be dis-

played), a number of variables will have been created by the

simulation. These variables are stored in the N-by-57 matrix

"y" on the MATRIX x stack, where N is determined by the time

duration parameter "totaltime" and the time frame parameter

"DToutput" in the batchrunscript. In addition, this data has

been saved in a file in the ./output directory, under the file
name "out <serial>" where <serial> is also defined in the

runscript. Data from the FVS simulation can be recovered from

these file by invoking the MATRIX x core and loading this file.

Each row of this matrix represents the values of a
variable computed at each time frame in the simulation. Of

particular interest for the PSS simulation are rows 15 and 16,

which contain the values for the track (TK) and cross-track

(XTK) boresight tracking angle error created by the search

simulation in the FVS. The 35-second spiral search portions

of these two vectors should be saved (as an ASCII file, using

the MATRIX x command "fsave") in a separate file for input to
the PSS simulator.

This file will contain the values of TK and XTK as data

pairs. However, .MATRIXxmay not always format the file in two
columns, so it is necessary to pass this file through a

"filter" program, written by Dynacon, prior to its input to

the PSS program. This is a C program that simply reads in the

data and writes every third data pair, starting with the

first, to standard output, formatting them into two columns.

NOTE: MATRIX x also attaches some labeling information to the

front of the saved file (typically three lines of text). The

current filter program will not accept these three lines, so

12-8

the file must be edited by hand prior to running the filter

program. Appendix E contains C code that could be added to

the filter program to automatically skip over these lines.

Running the PSS simulation

The TK/XTK data from the verifications simulations

performed by Dynacon reside as files with the name "pss_<n>"

in the directory ./PSS/csim, where <n> is the simulation run

number as described in [Dynacon92]. This directory is also

where the filter program resides as "filter.c" for the source
code and "filter" for the executable.

Filtering the "pss_<n>" files produces a spiral data file

that represents the time history of the simulation for

tracking TDRS. Each of the spiral data files has the name

"spiraldat<n>" to correspond with the files from which it was

produced. These files are used as input to the PSS simulator.

The PSS simulator is composed of four separate C source

files: "input.c", "poa.c", "sim.c", and "pwrl.c". Prior to

running a PSS simulation on a spiral data file, it is neces-

sary to modify "input.c" to set the number of simulation runs,

the spiral data set number <n>, and the mean TDRS signal level

(low 3.5 dB, high 26.5 dB). These values should be assigned

to the variables "n_runs", "spiral", and "mean", respectively.

In addition, the simulation uses the C random number

generator to help determine the probabilistic behavior of the

search. In order to exactly recreate the results of a

particular Dynacon simulation, the seed for the random number

generator (which normally is set to the process id of the

executing simulation), must be initialized to the same value

as the Dynacon run. This is accomplished by editing the file

"poa.c" and setting the variable "pid" to the value used in

the original run. This value is recorded in the outputs of

the Dynacon simulations in ./PSS/csim under the file names

"pss_<n>_<level>.plot", where <n> is the spiral data set

number and <level> is "low" or "high" corresponding to the

mean TDRS signal level used in the simulation.

Analyzing the outputs of the PSS simulation

The output from the Dynacon PSS simulations is summarized

in Appendix F for the corresponding PSS simulation run number,

spiral data set number and signal level. (Also included is

the random number generator seed used for each simulation, as

described in the previous section.) The last column in the

table in the Appendix represents the probability of successful

12 -9

search for a maximum pull-in radius of 0.6 degrees. The

specifications call for this value to be 90% or greater.

The actual output from the PSS simulator contains a range

of probabilities for pull-in radius values from 0.i to 0.8

degrees. Obviously, as the radius increases, the probability

of successful search will increase. The results were plotted

by Dynacon using the XPLOT tool, producing postscript-format-

ted files stored as "pss_<n> <level>.ps" in the ./PSS/csim

directory. They can also be plotted using GNUPLOT. (NOTE:

the output files contain a header line describing the spiral

data set number, signal level, number of runs, and seed. This

line must be manually removed prior to plotting with GNUPLOT.)

Examples of these output files and the associated plots are
shown in Appendix G.

EVALUATION OF EXPERZENCEB

It is difficult to say exactly how well we were able to

verify the results of the FVS/PSS simulation during this

summer's work. Part of the problem was that we were unable to

collect data from Dynacon until well into July, so that our

time to work with their simulations and data was effectively
halved.

Once we had loaded the information from Dynacon onto

commlab (which, incidentally, involved installing additional

disk space to hold the data and provide room to run the

simulations), our first work was to try to run the PSS

simulator on the spiral data sets provided by Dynacon. The

PSS simulator was compiled under an ANSI C compiler at Dynacon

that was not available on commlab. It was fairly simple to

convert the syntax of the PSS code from ANSI to "old style" C,

but when we ran the simulator, the probabilities produced were

always zero! After some investigation, we concluded that the

reason for this was in the way the compilers handled random

number generation. To a degree, this was verified when we

retrieved and installed GNU C (which conforms to the ANSI

standard syntax) and ran the original programs. The probabil-

ities produced were non-zero and agreed (for simulations at

the low signal level, at least) with those documented by

Dynacon. We are still investigating the discrepancies in the
high signal level results.

One ongoing problem was the use of the constant

"RAND_MAX" in the PSS simulator code. This constant, which

represents the maximum integer to be generated by the random
number facility, is defined as one less than the maximum

integer by the ANSI standard (so, on commlab, this value would

12-10

be 231-2, or 2,147,483,646). The constant was not part of the

GNU C environment, so it was inserted into the source code in

the file "sim.c". Since the low-level signal simulations

seemed to be reproducible, we believe that this works, but if

an ANSI C compiler is installed, this definition should be

removed.

Once we had addressed the problems with the PSS simula-

tor, we turned to the FVS simulator and attempted to see how

to create the data files that the PSS simulator used as input.

The documentation on this process included in the report was

incomplete_ so a number of "problem reports" had to be created

for Dynacon to fill in the gaps. The procedure used for

sending these reports to Dynacon over Internet is included as

Appendix H. Eventually, these procedures were collected

together (see Appendix C) so that we could attempt to recreate
the simulations.

At this time, we believe we understand the procedures by

which the simulations were run, but we have not yet been able

to completely recreate and validate the results. We expect

that this project will require more time and effort. Among
the lessons that can be learned from this project is the value

of good organization in documenting a project. It may be that

the documents provided by Dynacon were not meant to be a

"user's manual" for the simulation system but rather a

demonstration of the algorithms' compliance with their

requirements through unplanned (some would prefer "artistic")

testing. There is no indication of a test plan included in

the documentation available here, so it is not at all clear

that such a plan exists. While there is little reason to

doubt that the testing was done and that the algorithms do

indeed meet their requirements, there is little evidence at

this time that unequivocally demonstrates that they do so.

12-11

REFERENCES

[Dynacon92] $SF Space/Ground Antenna Control Alqorithms:

Final Desiqn Report. Volume II: ValidatioD and Verification.

Part A -- S_mulator Description and Validation, Alaorith TM

Verification Overview. Dynacon Enterprises Limited, 1992.

[ISI92] SvstemBuild/WS: User's Guide for Version 3.0,

Part 000-0051-002. Integrated Systems, Inc., 1992.

12-12

